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Abstract. We synthesized UiO-67 Metal Organic Frameworks (MOFs) functionalized with 

bpydcPt(II)Cl2 and bpydcPt(IV)Cl4 complexes (bpydc = bipyridine-dicarboxylate), as attractive 

candidates for the heterogenization of homogeneous catalytic reactions. Pt L3-edge XAFS 

experiments allowed us to thoroughly characterize these materials, in the local environment of 

the Pt centers. XAFS studies evidenced the rich reactivity of UiO-67-Pt(II) MOFs, including 

reduction to bpydcPt(0) under H2 flow in the 600−700 K range, room-temperature oxidation to 

bpydcPt(IV)Br4 through oxidative addition of liquid Br2 and ligand exchange between 2 Cl
−
 

and even bulky ligands such as toluene-3,4-dithiol. Preliminary XANES simulations with ADF 

code provide additional information on the oxidation state of Pt sites. 

1. Introduction 

Metal-organic frameworks (MOFs) are crystalline, porous solids consisting of metal ions or clusters, 

coordinated with organic linkers [1]. The recently discovered UiO-66 and UiO-67 classes of iso-

structural MOFs are obtained connecting Zr6O4(OH)4 inorganic cornerstones with 1,4-benzene-

dicarboxylate or 4,4′ biphenyl-dicarboxylate linkers, for the UiO-66 and UiO-67 MOFs, respectively 

[2]. Due to their outstanding stability at high temperatures, high pressures and in presence of different 

solvents, these materials are among the few MOFs already commercialized for applications in the 

fields of catalysis, H2 storage, and gas purification [1,2]. We are currently exploring the possibility to 

enhance the capabilities of the UiO-67 MOF by grafting to the framework an additional catalytically-

active Pt center, by chelating bipyridine-dicarboxylate (bpydc) linkers [3]. The resulting metal-

functionalized MOFs are attractive candidates for industrial applications aiming to heterogenization of 

homogeneous catalytic reactions. Due to the local character of the functionalization process, XAFS 

has played a key role in clarifying the local structural and electronic properties of the grafted metal 

center [4, 5]. 
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2. Experimental 

Pt-functionalized UiO-67 materials, hereafter UiO-67-Pt(II) and UiO-67-Pt(IV), were synthesized by 

the standard solvothermal method, by reacting ZrCl4 with a mixture of H2bpdc and 

(H2bpydc)/PtClx(H2bpydc) (x = 2 or 4; the ratio between the linkers being 9:1, and equal molar 

quantity of ZrCl4 and linker) in a solution of DMF [3]. 

Pt L3-edge (11564 eV) XAFS data were collected at the I811 beamline @ Max Lab II (Lund, 

Sweden). The white beam produced by a liquid He-cooled superconducting wiggler was 

monochromatized by an horizontally sagitally focused double-crystal Si(111) monochromator, 

detuned to 20% to minimize the third harmonic. Spectra were collected in transmission mode using 30 

cm ionization chambers for I0 and I1 and by a photodiode for I2. MOF samples were measured inside a 

home-made cell allowing sample activation and gas dosage under in situ or operando conditions [6]. 

The EXAFS spectra were extracted and analyzed with Athena and Arthemis codes [7]. Geometry 

relaxation, electronic structure and Pt L3 XANES calculations were performed by means of molecular 

orbital density functional theory implemented in ADF-2014 software [8]. B3LYP exchange correlation 

functional and large QZ4P basis set were used in all simulations. 

 

3. Results and discussion 

In this contribution we present results on UiO-67 functionalized with bpydcPt(II)Cl2 and 

bpydcPt(IV)Cl4 coordination complexes acting as linkers in the MOF framework and prepared 

following three different synthesis methods: (i) one-pot synthesis (OPS) where ZrCl4 and PtClx (x = 2 

or 4) precursors salts react with biphenyl and bipyridine linkers; (ii) premade linker synthesis (PMLS), 

where a previously prepared PtClx(H2bpydc) linker reacts with biphenyl linkers and ZrCl4; and (iii) 

post-synthesis functionalization (PSF), where a premade UiO-67-bpy MOF is suspended in a solution 

of precursor PtClx salt [3]. 

 
Figure 1. (a) Three-dimensional representation of UiO-67-Pt(II) MOF, evidencing the structure of the 

isolated H2bpydcPtCl2 center inserted in the MOF structure, with 2 N and 2 Cl in the first coordination 

shell of Pt(II) (atoms color code: Pt: dark cyan, N: blue, Cl: light green, C: gray, O: red, Zr 

cornerstones: light cyan). (b,c) Experimental FT of the k
3
-weighted EXAFS spectra collected for a 

typical (b) UiO-67-Pt(II) sample (PMLS synthesis) and (c) UiO-67-Pt(IV) sample (OPS synthesis) and 

their corresponding best fits; moduli of Pt−N and Pt−Cl single scattering paths are also reported, 

vertically shifted for the sake of clarity, together with the respective coordination numbers refined in 

the EXAFS fit. 

With the only exception of the UiO-67-Pt(II)-OPS, that crystallizes together with a fraction of 

about 40% of amorphous (nonporous) phase, the remaining syntheses resulted in high crystalline 

materials with porosity close to the target ideal structure. XRPD and Pt L3-edge XAFS studies proved 

that the three synthesis methods are equivalent and for Pt(II) samples fully comply with the target 

structure (figure 1a) on both long-range (ordered MOF framework) and short-range (local environment 

of Pt sites probed by XAFS) scales. The last point has also been supported by Pt L3 valence-to-core 

RIXS maps [3]. XAFS also revealed that the incorporation of Pt(IV) sites into the UiO-67 MOF is 

more critical. Although the synthesis of stable Pt(IV) linkers was successful (see figure 3a for XANES 
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spectra of H₂bpydcPtCl₂ and H₂bpydcPtCl4 linkers), during the preparation of the UiO-67-Pt(IV) 

MOFs a significant fraction of bpydcPt(IV)Cl4 sites is reduced to bpydcPt(II)Cl2, resulting in a final 

average Pt-coordination number NCl = (2.7 ± 0.3), lower than the target value NCl = 4 (figure 1c). 

UiO-67-Pt(II) systems were further tested toward accessibility and reactivity to molecules of small- 

(e.g. H2), medium- (e.g. Br2), and large-size (e.g. thiol), resulting in the reactive paths represented in 

figure 2. H2-temperature programmed reduction (TPR) treatments have been followed under operando 

conditions by Pt L3-edge EXAFS, showing that Cl ligands can be selectively removed as HCl 

molecules in the 600−700 K temperature range, resulting in bpydcPt(0) complexes linked to the MOF 

framework (reduction path, figure 2a). This result was derived from a sophisticated parametric 

analysis of the H2-TPR datasets (figure 2b), where all the EXAFS spectra collected in the 300−750 K 

range have been simultaneously refined, adopting the Einstein model for the Pt−N and Pt−Cl Debye-

Waller factors [3]. These findings were also supported by FTIR spectroscopy, which evidences the 

high coordinative unsaturation of the reduced Pt centers, able to form a variety of Pt monocarbonyl 

complexes and also bpydcPt(0)(CO)2 dicarbonyl complexes upon CO adsorption. The formation of 

EXAFS-silent Pt(0)-hydrogen species in these conditions is currently under investigation, as well as 

the effect of higher H2 concentration during H2-TPR, possibly inducing aggregation of the isolated 

Pt(0) sites into highly reactive metal nanoclusters. 

The large pore size of UiO-67 allows for ligand exchange between 2 Cl
− 

and even bulky ligands 

such as toluene-3,4-dithiol (H2tdt, ligand exchange path, figure 2c). Framework bpydcPt(II)Cl2 

complexes can also be oxidized at room temperature to bpydcPt(IV)Br4 through oxidative addition of 

liquid Br2 (oxidation path, figure 2d). With this respect, EXAFS monitored the ligand exchange in the 

first coordination shell of Pt (figure 2), while XANES spectroscopy was used to monitor the changes 

in the Pt oxidation state along the observed reactions (figure 3). 

 

Figure 2. Reactivity of Pt(II) species in 

functionalized UiO-67-Pt MOFs as 

evidenced by EXAFS in operando and static 

conditions. (a,b) Reduction path: (a) FT of 

the k
3
-weighted Pt L3-edge EXAFS spectra 

collected during operando H2-TPR 

experiments on UiO-67-Pt(II)_PMLS MOFs, 

simultaneously refined adopting the Einstein 

model for the Pt−N and Pt−Cl Debye-Waller 

factors, as shown in part (b). (c,d) 

Experimental FT of the k
3
-weighted Pt L3-

edge EXAFS spectra and corresponding best 

fit curves for UiO-67-Pt(II) after interaction 

with (c) H2tdt (ligand exchange path) and (d) 

Br2 (oxidation path). Single scattering 

contributions to first shell EXAFS signal in 

the two cases (Pt−N and Pt−S in part (c) and 

Pt−N and Pt−Br in part (d)) are also 

reported, vertically shifted for the sake of 

clarity, with indicated the correspondent 

coordination numbers refined in the fit. 

Simulated XANES spectra, calculated with ADF code (figure 3b,d), were able to reproduce 

correctly the variation of the white line intensity for UiO-67-Pt(II) and -Pt(IV) linkers (figure 3a), and 

UiO-67-Pt(II) MOF before and after the interaction with H2tdt and Br2 (figure 3c). Indeed, white line 

intensity in L3-edge XANES is directly proportional to the density of the unoccupied 5d states and 

consequently it provides information on the formal charge (or valence) of Pt species [3]. In particular, 

XANES simulations confirmed that after ligand exchange with H2tdt the pristine Pt(II) oxidation state 
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is conserved, whereas interaction with Br2 results in oxidized H2bpydcPt(IV)Br4 complexes. In a 

successive work, we plan to use the ADF calculated unoccupied molecular orbitals for improving the 

simulation of the XANES spectra in dipole one-electron approximation along with finite difference 

method with an upgraded version of the FDMNES code [9]. 

 

Figure 3. (a) Experimental XANES 

spectra of the H₂bpydcPtCl₂ and 

H₂bpydcPtCl4 linkers. (b) Corresponding 

theoretical spectra computed with ADF 

code. (c) Experimental XANES spectra 

of UiO-67-Pt(II) MOF before (red curve) 

and after interaction from the liquid 

phase with H2tdt and Br2. (d) Theoretical 

spectra computed with ADF code of the 

H₂bpydcPtCl₂, H₂bpydcPt(tdt) and 

H₂bpydcPtBr4 molecular fragments. 

In conclusion, XAFS allowed us to thoroughly characterize the local coordination environment and 

oxidation states in a series of Pt(II)- and Pt(IV)-functionalized UiO-67 MOFs, synthesized by different 

methods. By combing EXAFS in static and operando conditions with DFT-assisted XANES 

simulations we also explored the rich reactivity of Pt(II) sites, undergoing reduction, oxidation and 

ligand exchange reactions. These results pave the way to further studies aiming to assess the 

performance of these systems for the heterogenization of specific homogeneous catalytic reactions. 
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